提问

#楼主# 2018-8-9

跳转到指定楼层
唐马儒依然掉线中……
打假不靠自己还行 靠天靠地靠“大佬”,算不上好汉
关于这次的事件,唐马儒没有什么帮助
相信自己的技术水平与演讲能力,能够解决问题最近,特斯拉线圈很火,但是绝对不是DIY爱好者们想要的火法






这事甚至国外都知道了

“ 智能锁行业这个叫智能锁检测器,学名叫特斯拉线圈

最早是一个客户的锁被打开了,大概是18年的2月份,于是整个人都不好了。
最早我们以为朋友圈那个视频是假的,

有个做方案的朋友大呼这个检测器是骗子。然而真的打开了。他说只能打开访客模式的,上了管理员密码的打不开。然而上了密码又打开了。”

不,我非常清楚这个东西不是特斯拉线圈
那么什么是特斯拉线圈?
特斯拉线圈(Tesla Coil)是一种使用共振(谐振)原理运行的变压器(谐振变压器),由美籍塞尔维亚裔科学家尼古拉·特斯拉在1891年发明,主要用来生产超高电压但低电流、高频率交流电力。
特斯拉线圈,俗称磁暴线圈。玩过《红色警戒》的都知道,是一种能放出电光和闪电的高级防御塔。它的英文名就叫TESLA COIL

特斯拉本人早年发明特斯拉线圈,是为了应付当时的世博会。为了报复爱迪生白piao自己的发明(对直流电机的重新设计)不给钱,特斯拉决定搞个大发明,彻底将爱迪生公司当时的直流电力系统打垮。

 1893年,科学人特斯拉一手拿着电线,一手拿着灯泡,在众目睽睽之下,灯泡亮起来,人安然无恙。于是,所有人都知道,19世纪最伟大的美国发明家也可能是世界上最伟大的发明家托马斯爱迪生先生输了。不过,彼时大多数人还无法意识到的是,爱迪生输掉的不仅仅是为1893年芝加哥世博会提供输电系统、电灯泡的买卖,还是未来全世界输电系统的标准。
相当于当时美国人口一半的人参观了芝加哥世博会,在夜晚见证了交流电带来的奇迹。


特斯拉线圈,是带有交流电的线圈。各位也学过电磁感应,知道磁场可以越通过空间传递能量。 特斯拉当年就用了一个接收线圈连接了一个灯泡,然后灯泡就在感应电流的作用下自己亮起来了。
特斯拉以无线传输电力的方式,直到一百年后的今天才大量应用起来,2006年麻省理工学院最尖端的技术可以利用“谐振式电磁感应”将无线电力传输到三公尺,隔空点亮了60瓦的灯泡
谐振
关于谐振的原理,我们简单说:各位中学物理都学过单摆运动和弹簧振子是吧。当弹簧振子受到周期性的驱动力的时候,弹簧振子就会发生动能和弹性势能的不断转换。当驱动力的频率等于弹簧振子/单摆 的固有频率时,发生简谐运动(或简谐振动谐振SHM(Simple Harmonic Motion))即是最基本也是最简单的一种机械振动。当某物体进行简谐运动时,物体所受的位移成正比,并且力总是指向平衡位置。
根据牛顿第二定律,F=ma,当物体质量一定时,运动物体的加速度总跟物体所受合力的大小成正比,并且跟合力的方向相同。簡諧運動系統的機械能守恆
固有频率是体系自己的频率。比如一个弹簧振子,他的进度系数为k,相应的就有自己自由振动的频率,就是固有频率。当系统被施加外力时,当振幅最大时的频率叫共振频率,二者在线性近似下可以认为相等
在电学中,同样存在谐振。

各位知道LCR电路吧:LC电路,也称为谐振电路槽路调谐电路,是包含一个电感(用字母L表示)和一个电容(用字母C表示)连接在一起的电路。(通常现实中电路中的电阻不可忽略,因此称为LCR电路)

理想状态下,当对LC电路输入电能后,由于电感L和电容C都能将电能以不同的形式转换为其他能量并过程可逆,因此能量不会消失。由于电感磁场储能和电容电场储能的固有形式,因此能量会在电容器和电感器之间不停的转移。这个过程就像荡秋千(单摆运动)一样。
各位也知道单摆运动周期的公式:

频率是周期的倒数。我们都知道,荡秋千的时候若是有小伙伴在适当的时候推你一把的话,秋千就会越荡越高,但是如果用力的时机错误,就会荡不起来甚至把小伙伴推下秋千。让我们来根据理论计算这个适当的时候到底是什么时候。
从公式中看得出来,单摆运动的周期只与摆长和当地重力加速度有关。这是因为单摆运动的回复力是重力的分量,而不同质量的物体虽然重力不同,但是重力加速度相等。还记得两个铁球同时落地吗?不同物体以静止的状态,在重力的作用下,忽略阻力,它们的运动状态完全相等,均做加速度为g的匀加速直线运动。而摆长决定重力的分力,从受力角度分析,单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大,回复力越大。
设当地重力加速度=10m/s^2 秋千长=5
那么谐振周期=2x3.14x根号0.5=4.44秒
当然,现实中游乐园的秋千的长度不会这么整这么好算,但是让我们结合现实思考:当我们玩悠悠球或是玩钥匙链的时候,是绳长些单摆运动的周期长还是绳短时单摆运动的周期长?结合公式思考下。
摆长虽然有根号,但是摆长降低后公式的计算结果数值也下降了
算清楚单摆运动的固有周期后,于是你在小伙伴周期性的推动下,秋千越荡越高,越荡越高……
同理,在LC谐振中,F=1/(2π√LC) T=2π√LC
由于外界输入的能量近乎完美的补充到了电路(谐振回路)中,因此电流只会越来越大,电压只会越来越高。


电容器有保持电压不变的趋势,电感有保持通过自身电流不变的趋势,但是它们在一起通过与外界输入的交流电谐振就变成了超高压+大电流。怎么样?是不是很神奇?
松散耦合的初级和次级线圈通过磁相位同步强耦合。特斯拉线圈由一个(有时用两个)谐振感应耦合共振电路(谐振电路)组成。次级线圈的短路电感杂散电容组合为谐振电路。通过以驱动初级线圈在次级线圈的谐振频率(串联谐振频率)1' 磁相位同步使得互磁通量的增加,从而次级线圈中发生最高电压。

(特斯拉线圈最简易的电路图 看得出来是特斯拉本人发明的特斯拉线圈原型-由高频交流电源(左侧PRIMARY主线圈)和电抗器组成(右侧SECONDARY副线圈))
显然的,在中国科技爱好者中出现将线圈翻译为初级线圈和次级线圈的巨大偏差后,很多人理所应当的以为特斯拉线圈就是个造型诡异的变压器,事实上并非如此。特斯拉线圈的输出电压不等于U1xN2/N1,而是等于UxQ。而一个看上去不起眼的,匝数不过两三百的线圈的Q值很可能几百上千。这样,为了得到高压,我们就“破解”了U1/U2=N1/N2的“魔咒”——再也不用绕那么多匝线圈了。这也是特斯拉线圈的迷人之处——低输入,高输出
理想条件下,从外界输入特斯拉线圈的电能会完全被特斯拉线圈吸收,但是由于人是活在地球上,因此输入的能量不是被电弧/电晕放电放掉了,就是以电磁波的形式发散到空间中了——导致实际的特斯拉线圈附近总之存在高强度电磁场。


这个电路是一个标准的射频发生器,它设计的目的是为了向空间发射射频信号。经过调制的信号可以传递相当远的距离,并且能传递大量信息。


这是它的电路图

相信认真听讲的同学们看到这里一定会发现,这东西的电路图完全和特斯拉线圈不同。
它是一种基于E类放大器的简化电路,俗称YANGE版。
E类功放原理:

与电源相连的的电感为射频扼流圈,允许直流通过为电路提供能量,阻止射频电流从此传出,理想状态下感抗无穷大。LX的作用是提供一定的感抗,具体的原因会在之后说明。LS和CS构成谐振于信号基波频率的串联谐振电路,理想状态下品质因数Q无穷大。RL为负载电阻。开关管等效为开关和输出寄生电容的并联电路,用开关代替开关管等效电路中的开关,电容CP代替开关管输出端的寄生电容。   

电路图中标出了部分电压或电流。Idc是输入电流;i(t)和u(t)分别是开关和电容CP并联部分的电流和电压,也就是开关管的电流和电压,都是时间函数;isw(t)和ic(t)分别是开关和电容CP两端的电流,也都是时间函数;Irfcosωt是射频电流的时间函数,射频电流峰值即为系数Irf

设θ=ωt。这些电压或电流随时间变化的图像,也就是他们的波形。由上图可以看出,i(θ)是输入电流和射频电流之和。-α1到2π-α1为一个工作周期。-α1到α2开关管导通,这时u(θ)等于零,ic(θ)也等于零,isw(θ)和i(θ)相同;α2到2π-α1开关管截止,这时isw(θ)等于零,ic(θ)与i(θ)相同,u(θ)即为电容两端电流的积分。2π-α1时,u(θ)恰好降为零,然后进入下一周期,开关管导通。可以看出,寄生电容两端电压为零时开关管才导通,这就解决了之前提到的问题。开关管电压和电流乘积始终为零,因此其理论效率为100%。

它是一种工作在零电压开关(ZVS)模式下的一种功率电路。这种工作模式由于其理论效率非常高因此广泛用于各种现代电源/射频电路中。
在这个电路中虽然也发生谐振,但是目的仅仅是为了过零关断提高效率。而且原则上讲,特斯拉线圈是串联谐振变压器,它的基本原理就是基于谐振,但是在射频发生器中,谐振却不是必须的。因此这些记者只看到了表面现象却忽略了科学上本质的区别,是犯了严重的形而上学的错误的。
给我们电子爱好者造成了困扰,就连我们正常在网购平台上购买/发布DIY作品都做不到了,我们都很ANGRY,非常生气。因此我本人仅代表失传技术研究所对这些无良媒体不深入调查研究后随意发表言论,对各位科技爱好者们造成的严重困扰表示强烈抗议,并在各媒体发文澄清之前保留权利。我所会联系各大平台的科技爱好者们以各种各样的形式继续维护我们作为DIYer的各项权利。并且我们还会对那些挂名特斯拉线圈的奸商实施制裁,发起价格战。从现在开始,那些妄图依靠挂靠电子爱好者们的优秀作品售卖其劣质产品用于肮脏目的的人,它们好日子到头了。
我所早在2018年初就设计了体积超小性能超强的射频发生器PCB电路板,现在我们将这个电路板公开发表于失传技术研究所工作室并已经联系了热血人士大量投放市场,对那些妄图赢取暴利的奸商发起价格战,欢迎各位有意维护合法权利的各位加加入我们,我们将给予全力支持。
遇到这种奸商,我们可以做的还有很多 无论黑白,我们都能有很多办法让奸商无利可图。相信在坚持正义的各位面前,奸商很快会得到应有的下场
转播转播 分享淘帖
回复

使用道具

39

主题

85

帖子

1636

积分

军官学校学员

积分
1636
沙发
感应研究所 发表于 2018-8-9 21:39:33
http://www.acfun.cn/a/ac4489243
36楼 李敏镐
没人发现“甚至连国外都知道了”那里放的是一张谷歌搜索然后结果为知乎讨论的图吗, 崽 种媒体又NM睁着眼睛说瞎话(仅针对这一句话)

2018年7月30日 18:43






我说有就有

回复

使用道具 举报

0

主题

1

帖子

0

积分

列兵

积分
0
板凳
desert 发表于 2018-8-10 15:52:36
Z吧吧友滋瓷一下~
回复

使用道具 举报

B Color Link Quote Code Smilies
Archiver|手机版|小黑屋|MakerTime 创客时代  
Powered by Discuz! X3.3  © 2001-2017 Comsenz Inc.